麦都实验田

米乐M6官网·数据挖掘在用户窃电行为识别中的应用

发布时间:2024-04-15 04:27:30 来源:米乐m6米乐平台 作者:M6米乐最新下载地址

  电力资源在人们的日常生产生活当中起着不可或缺的作用,有些用电客户为了一己私利窃取电能,这不但会给电力公司造成较大的经济价值损失,同时也增加了电力系统的安全隐患,给用电安全和社会稳定造成一定的影响。

  以往,为发现用户窃电,主要是通过用户举报窃电、定期巡检、定期校验电表等方式,这种方法对人的依赖性很强而且目标不够明确,效率比较低,从用户窃电开始到发现窃电时间跨度较长。随着科学技术的发展,用户窃电手法越来越多样化且越来越隐蔽,更有使用倒表器、移相方式、有线远方控制和无线],使得窃电行为被发现越来越困难。目前,也有很多供电企业营销稽查人员利用计量装置的异常报警功能和电量查询功能来对用户用电情况进行监控,但由于存在终端的误报和漏报等情况,往往不能精准快速地定位到窃电用户。

  数据挖掘算法,建立智能识别窃电用户的模型,从多方面考量,使得窃电行为无处遁形。CRISP-DM模型是数据挖掘领域中最权威的过程模型,涉及了商业理解、数据理解、数据准备、建立模型、模型评估、结果发布等6 大环节。这个模型强调“数据不仅仅是数据的呈现或以某种方式组织,也不仅仅是数据分析、挖掘、统计或建模,而是一个从业务角度理解商业需求、探索需求解决方案,然后再到开展实践检验和验证方案的完整过程”。

  C4.5 算法,作为数据挖掘中经典算法,是分类决策树算法中的一种常用机器学习算法,它是基于ID3 算法进行改进后的一种重要算法。在构造决策树的过程中,“如何选择属性”和“何时停止”是两大关键问题,在这两大问题上的不同处理方法,产生了不同的决策树算法(CART、ID3 和C4.5)。在如何选取属性方面,Gini 指标、信息增益和信息增益率是衡量一个属性区分数据样本能力的不同度量标准,其中ID3 算法用信息增益,C4.5 算法用信息增益率,CART 决策树用Gini 系数。

  根据电力企业的用电检查业务指导相关的内容,可基于营销稽查、线损、业扩、计量、电费、客服等专业数据预测用户窃电信息[]。本文建立的用户窃电智能识别模型选取450 条训练数据和50 条测试数据。数据集的特征包括用户类别、电价类别、丰枯类型、用电性质、地区类别、信用级别、业务类别、费用类别、峰谷标志、电量类别、季节类型、违窃标志的12 个字段。

  本文基于数据挖掘的技术,分析用电客户相关的用电特征数据,建立窃电用户识别模型,选用C4.5 决策树算法进行模型的训练,得到了较好的预测结果。该模型能够对用户的窃电行为进行有效而科学的判断,帮电力系统营销稽查相关工作人员及时地研判用户是否存在窃电情况。相比于传统的反窃电技术工作量大、工作效率低,该方法能够提高识别效率,减少供电企业的经济损失。


米乐M6官网
亮照